
Blame for Hybrid Typing

Peter Thiemann

Flanagan and others [7] introduce hybrid type checking as a framework
that employs static type checking as much as possible and reverts to dynamic
checking when typing constraints cannot be resolved statically. Their lan-
guage supports refinement types like x : int{x > 0} for the set of positive inte-
gers and dependent function types like the type of strictly increasing functions
x : int{x > 0} ! y : int{y > x} along with the standard notion of subtyping for
dependent types [1].

The extra ingredient of a language with hybrid type checking is a cast ex-
pression that we write as M : S ) T for casting the value of M from source
type S to target type T . For instance, a cast may further restrict an increasing
function F so that it never returns a value greater than twice its input.

G = (F : (x : int{x > 0} ! y : int{y > x})
) (x : int{x > 0} ! y : int{y > x ^ y < 2 ⇤ x}))

Applying the function G to a suitable argument, say 42, yields a term that
applies a cast that is derived from the ranges of the original function type cast
to the result of the function application:

(F 42) : y : int{y > 42} ) y : int{y > 42 ^ y < 2 ⇤ 42}

The implementation of this cast checks the predicate Q = y > 42 ^ y < 2 ⇤ 42
on the result y = (F 42) of the function call. But this check performs more
work than strictly necessary because it ignores the static knowledge P = y > 42
from the precondition on y. We develop a framework to find a delta predicate,
which is cheaper to check at run time than Q, but which is equivalent to Q when
assuming P . In this particular example, a suitable delta predicate is y < 84.

We formalize a dependently typed blame calculus based on the ideas of hy-
brid typing. This calculus can be seen as an intermediate language in compiling
a dependently typed language with refinement types: Subtyping constraints
that can be discharged at compile time are eliminated and the remaining ones
are reified as run-time type casts. This situation is similar as in the blame
calculus considered by Wadler and Findler [14]. However, their base calculus is
simply typed and their predicates are boolean-typed terms in the calculus. In
contrast, our calculus is dependently typed and we employ a separate language
of predicates (first-order predicate logic).

Following Wadler and others [9], we develop the corresponding coercion cal-
culus and define a translation between the calculi that embodies the simplifi-
cation motivated by the above examples. While our initial development hap-
pens in a setting with first order logic with abstract predicates in types, we
subsequently instantiate abstract predicates to linear integer constraints and
demonstrate that finding the simplified run-time checks amounts to a synthesis
problem. We implemented this synthesis procedure using the Rosette system
[12, 13] and performed some experiments.


