
Recency Types for JavaScript

(Extended Abstract)

Phillip Heidegger Peter Thiemann
Universität Freiburg, Germany

{heidegger,thiemann}@informatik.uni-freiburg.de

April 11, 2009

Scripting languages are popular because their dynamic type systems accelerate the devel-
opment of short programs. For larger programs, static analysis becomes an important tool for
detecting programming errors.

We specify such an analysis as a type system for a call-by-value lambda calculus with objects
and prove its type soundness. The calculus models essential features of JavaScript, a widely used
dynamically-typed language: objects as property maps, type change during object initialization,
and prototypes.

In JavaScript, the type of a property can change with every assignment. As long as a property
is not yet assigned, accessing it returns the value undefined, which is a regular JavaScript value.
Hence, in a flow-insensitive type system, each property type would have to contain the type
undefined as a subtype (e.g., as component of a union type). As it is a run-time error to
dereference undefined or to call it as a function, the type system must reject any attempts to
use the property in this way. Although JavaScript converts undefined to a string, a number,
or a boolean as needed, this conversion may not be intended by the programmer. Hence, the
imprecise type gives rise to too many false positives.

We tackle this problem in a novel way with recency types. Recency types arise in a flow-
sensitive type system, which distinguishes between the most recently created object at some
program point and all objects previously created at the same program point. For each object
creation site, it assigns one type to the most recent object and another type to all remaining
objects. The crucial observation is that the type of the most recent object describes exactly
one object. Hence, any update to the value of this object can be precisely reflected as a strong
update in the type of the object.

Recency types fit the typical initialization pattern in imperative languages where the pro-
grammer allocates a number of objects and then initializes these objects. Quite often, no further
properties are defined after the initialization and the type of the properties rarely changes. Dur-
ing the initialization phase, objects are most recent and their types can be updated in a flow
sensitive manner. Later on, when the shape of the object does not change anymore, it falls back
to flow insensitive typing.

The idea of a recency abstraction can be fruitfully transported to a type system. This type
system is amenable to analyzing programs in scripting languages, in particular handling object
initialization. Its distinguishing feature is the ability to handle type changes and prototypes
precisely.

We designed and implemented a type inference algorithm and exercised it with example
programs. We are extending the implementation with the goal to apply it to realistic programs.


