
Augmenting Programs with Analysis Results∗

Adrian Prantl
Institut für Computersprachen

Technische Universität Wien, Austria
adrian@complang.tuwien.ac.at

Abstract

In this talk, we propose a new storage method for the results of a static program
analysis. Instead of attaching the analysis results to the control-flow graph,
we automatically transform the program into a augmented version that uses
assert-statements to explicitly check the analyzed properties at runtime. This
transformation opens up multiple applications:

• Automatic testing of the analysis implementation: This can be done dy-
namically, by generating an encompassing main function that executes
the program with sensible input data. As a more expensive but complete
alternative, this step can also be done statically via model checking.

• Freezing of interfaces: Since the transformed program is naturally a more
restricted version of the original program, the method can also be used to
explicitly encode e.g. calling conventions. This way, the program can be
hardened against future modifications.

• Aiding compiler optimizations: By rewriting analysis results as explicit
tests a subsequent compilation process can use the invariants to generate
optimized code.

The presented method has been implemented in the SATIrE source-to-source
analysis framework using the Termite program transformation library. First
experiments showed promising results and proved already to be valuable for the
debugging of analysis implementations.

References

SATIrE: http://www.complang.tuwien.ac.at/satire/
Termite: http://www.complang.tuwien.ac.at/adrian/termite/

∗This work has been partially supported by the Austrian Science Fund (Fonds zur
Förderung der wissenschaftlichen Forschung) under contract P18925-N13


