
Using Coverage Analysis to Automatically Generate Test Cases

Tim A. Majchrzak
Department of Information Systems

University of Muenster
Muenster, Germany

Email: tima@wi.uni-muenster.de

1. Extended Abstract

Unit testing is an important part of the overall test process
as it offers the chance to discover a substantial part of errors
in early development phases. It is hard to write unit tests
that guarantee the desired coverage of the code. Ideally, they
could be created automatically with no or little intervention
by testers. We hence investigate on this topic.

Our tool, Muggl (Muenster generator of glass-box test
cases), is based on GlassTT [1] which was designed at
our department. Due to changes of fundamental design
principles we have rewritten Muggl from scratch. It only
incorporates the constraint solver built for GlassTT which
has proven to be powerful. With the design changes made,
we aim at learning from problems encountered with sym-
bolic execution, while keeping the already known amenities.

Muggl symbolically executes class files containing byte-
code, as for example generated by the Java compiler javac.
Using byte code instead of source code has two main
advantages. Firstly, optimizations done by the compiler are
taken into account. And secondly, many languages can be
compiled to Java bytecode and therefore tested using just
one tool. Muggl uses a symbolic implementation of the Java
virtual machine (JVM) [2] that offers the ability to treat input
parameters of a method as logic variables. Conditional jumps
and other instructions that allow alterations of the control
flow lead to choice points generated when executed.

Using a search algorithm processing the tree of potential
paths through the program, Muggl tries to determine sets
of parameters for the method to be tested. Each set of
parameters found and the corresponding result establish a
test case. Since the number of paths through a program is
typically infinite, we need means to select a small finite set
of representative test cases. This selection is done based on
control- and data-flow coverage. Covering control-flow is
a possible goal of unit testing. However, experiments show
that it is not sufficient in practice and that many errors are not
exposed based on this criterion. Hence, we suggest tracking
the data-flow as well to check the way data is loaded and
changed. Due to a number of reasons we have decided to
statically generate control-flow graphs and definition-usage
(DU) chains rather than generating them only-the-fly. This
significantly speeds up elimination of test cases.

Generating the control-flow graph is very straightforward.
Bytecode instructions form one or more edges in the graph
according to their execution characteristics. Conditional
jumps e.g. have two edges. Also taking exceptions into
consideration is very important, since exceptions are a
fundamental part of Java and Java bytecode. Intra- and in-
terprocedurally tracking def-use chains is far more complex.
We have developed a novel algorithm to generate those
chains. Outlining it in this abstract is however out of scope.

Based on coverage data we eliminate test cases. When
Muggl finishes execution, a number of test cases larger than
the optimal number is left. Reducing their number based
on their contribution to the overall coverage of control-
flow edges and DU chains is a NP-complete set-coverage
problem. We have implemented a greedy algorithm that very
well approximates the optimal result. We then tested the
sketched approach with a number of simple and some larger
programs. Elimination of test cases has proven to be very fast
and to eliminate (almost) any redundant test case. Execution
times usually did not exceed fractions of a second. Even
eliminating 374.879 test cases only took about 3,5 s.

2. Presentation Focus

Presenting our approach, we would like to only shortly
introduce into Muggl’s basics. We rather aim at discussing
using coverage to eliminate test cases. This offers the chance
to also discuss whether coverage alone can be used to judge
if all test cases required to successfully test a program
have been found. Moreover, we would like to present some
experimental results. Outlining future plans and general
ideas would be an addition. Receiving feedback that helps
to reconsider ideas and to prioritize work would be perfect.

References

[1] R. A. Mueller, C. Lembeck, and H. Kuchen, “Generating glass-
box test cases using a symbolic virtual machine,” in Pro-
ceedings of the IASTED International Conference on Software
Engineering (IASTED SE 2004), 2004.

[2] T. Lindholm and F. Yellin, The Java(TM) Virtual Machine
Specification (2nd Edition). Prentice Hall PTR, April 1999.

mailto:tima@wi.uni-muenster.de

	Extended Abstract
	Presentation Focus
	References

