
Reversible Programming Languages

Robert Glück

University of Copenhagen

The principles of reversible programming languages are explicated
and illustrated with reference to the design of a high-level imperative
language, Janus. The fundamental properties for such languages include
backward as well as forward determinism and reversible updates of data.
The unique design features of the language include explicit postcondition
assertions, direct access to an inverse semantics and the possibility of clean
(i.e., garbage-free) computation of injective functions. We suggest the
clean simulation of reversible Turing machines as a criterion for computing
strength of reversible languages, and demonstrate this for Janus. We show
the practicality of the language by implementation of a reversible fast
Fourier transform. Our results indicate that the reversible programming
paradigm has fundamental properties that are relevant to many different
areas of computer science.

Joint work with Tetsuo Yokoyama and Holger Bock Axelsen.


