Tracing the Meta-Level: PyPy’s Tracing JI'T
Compiler

Carl Friedrich Bolz
Heinrich-Heine-Universitat Diisseldorf
Institut fir Informatik
Softwaretechnik und Programmiersprachen

We attempt to apply the technique of Tracing JIT Compilers [3, 2] in the
context of the PyPy project![4, 1], i.e. to programs that are interpreters for
some dynamic languages, including Python. Tracing JIT compilers can greatly
speed up programs that spend most of their time in loops in which they take
similar code paths. However, applying an unmodified tracing JIT to a program
that is itself a bytecode interpreter results in very limited or no speedup.

In this talk we show how to guide tracing JIT compilers to greatly improve
the speed of bytecode interpreters. One crucial point is to unroll the bytecode
dispatch loop, based on two hints provided by the implementer of the bytecode
interpreter. The technique is already mature enough to be applied to a num-
ber of example interpreters, but also to PyPy’s full Python interpreter, giving
interesting speedups.

References

[1] C.F. Bolz and A. Rigo. How to not write a virtual machine. In Proceedings
of the 3rd Workshop on Dynamic Languages and Applications (DYLA 2007),
2007.

[2] A. Gal and M. Franz. Incremental dynamic code generation with trace
trees. Technical Report ICS-TR-06-16, Donald Bren School of Information
and Computer Science, University of California, Irvine, Nov. 2006.

[3] A. Gal, C. W. Probst, and M. Franz. HotpathVM: an effective JIT com-
piler for resource-constrained devices. In Proceedings of the 2nd International
Conference on Virtual Ezecution Environments, pages 144-153, Ottawa, On-
tario, Canada, 2006. ACM.

[4] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine construction.
In Companion to the 21st ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 944-953, Port-
land, Oregon, USA, 2006. ACM.

Ihttp://codespeak.net



