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We attempt to apply the technique of Tracing JIT Compilers [3, 2] in the
context of the PyPy project![4, 1], i.e. to programs that are interpreters for
some dynamic languages, including Python. Tracing JIT compilers can greatly
speed up programs that spend most of their time in loops in which they take
similar code paths. However, applying an unmodified tracing JIT to a program
that is itself a bytecode interpreter results in very limited or no speedup.

In this talk we show how to guide tracing JIT compilers to greatly improve
the speed of bytecode interpreters. One crucial point is to unroll the bytecode
dispatch loop, based on two hints provided by the implementer of the bytecode
interpreter. The technique is already mature enough to be applied to a num-
ber of example interpreters, but also to PyPy’s full Python interpreter, giving
interesting speedups.
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