
Tabular Expressions and Total Functional Programming

Baltasar Trancón y Widemann
David Lorge Parnas

Software Quality Research Laboratory (SQRL)
University of Limerick, Ireland

Our research Group is developing methods of producing practical reference documentation
for software products and components. Our document contents are defined by a relational model
in which each document is required to be a representation of a specified relation. In effect, we
are using mathematical descriptions of relations to provide specifications and descriptions of
programs written in conventional languages.

Key to making these documents readable is a multidimensional form of expressions, which
we call tabular expressions. These parse complex expressions into arrays of simpler expressions
allowing readers to “look up” the information that they seek without understanding the whole
expression.

Tools that check and evaluate these expressions would be very useful when these methods
are applied and we are looking for efficient implementations of such functions.

Typed lambda calculus has been used as a foundational model of general mathematical
expressions in early mechanized mathematics systems such as Automath, and in theorem provers
such as Coq, HOL and Isabelle. We explore the application of this approach to interpret tabular
expressions. Our approach is based on a simple functional definition language for tables, their
semantics and auxiliary functions and datatypes. This language can be compiled to produce
evaluators, or interpreted to interoperate with a theorem prover or computer algebra system
for symbolic reasoning. We have implemented a front-end for the language, a type checker and
a back-end that generates Java code.

In mathematics, total functions are often preferred over partial ones, because algebraical
and logical reasoning seems easier for the former than for the latter. The denotational semantics
of Turing-complete functional programming languages, on the other hand, treat all functions
as potentially partial. This is reflected in the type system, and valuable totality information is
lost in the implementation of a function in such a language.

We have chosen a total functional system based on Barendregt’s lambda cube for both
reasoning and execution purposes. The experience we have gained from the implementation
of basic standard functions and data structures and several types of tables, suggests that the
restrictions on recursion and type inference imposed by such a system do not impede practical
programming unduly. We show that many aspects of the modeled theory map directly to
standard design principles of functional programming such as folds and monads, and result in
highly concise, explicit and reusable definitions.

References

[1] D. L. Parnas, J. Madey, and M. Iglewski. Precise documentation of well-structured pro-
grams. IEEE Trans. Softw. Eng., 20(12):948–976, 1994.


