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Currently several dozens of static-analysis tools are
readily available for software development. Static-
analysis tools exist for most common programming lan-
guages, though the majority of tools support some sub-
set of C, C++, or Java. A comparison of these tools
shows that the number of accepted languages is small,
though many differences exist in the range of language
constructs that are fully supported. The analysis re-
sults are difficult to compare because the they are re-
ported in some proprietary format. For that reason
analysis results from different tools usually cannot be
combined with reasonable effort either.
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Figure 1. Infrastructure: Composed of LLNL-
ROSE (blue), PAG (red), SATIrE (green)

We have crafted an infrastructure by combining exist-
ing tools and languages for providing a solid basis for a
compact specification of different program analyses for
industrial applications (see Fig. 1). The present state
is that we have achieved the first stage of supporting
one popular language family, C/C++, and that com-
pact program analysis specifications are possible by us-
ing the Program Analyzer Generator (PAG) [1] from

AbsInt. Program Transformations can be performed
as source-to-source transformation by using the LLNL-
ROSE infrastructure [2], developed at Lawrence Liver-
more National Laboratory. The integration of PAG
into LLNL-ROSE is automated by the Static Analysis
Integration Engine (SATIrE), developed at TU Vienna.
Furthermore we also provide a connection to Prolog
which allows the specification of program analyses and
transformations as logic programs, currently focusing
on worst case execution time (WCET) analysis and an-
notation.
The talk presents the challenges and solutions of inte-
grating the framework LLNL-ROSE, the analyzer gen-
erator PAG, and different program representations of
C/C++, for allowing compact analysis specification,
source-to-source optimization, generating external for-
mats, and automating source code annotation. We
also describe the interfaces that we can offer for in-
tegration with other frameworks. Eventually results
are presented for some C/C++ analyses that we have
performed with our infrastructure.
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