
Combining Tools and Languages for Source-Based Static Analysis and

Optimization of High-Level Abstractions

Markus Schordan

Institute of Computer Languages

Vienna University of Technology, Austria

markus@complang.tuwien.ac.at

Currently several dozens of static-analysis tools are
readily available for software development. Static-
analysis tools exist for most common programming lan-
guages, though the majority of tools support some sub-
set of C, C++, or Java. A comparison of these tools
shows that the number of accepted languages is small,
though many differences exist in the range of language
constructs that are fully supported. The analysis re-
sults are difficult to compare because the they are re-
ported in some proprietary format. For that reason
analysis results from different tools usually cannot be
combined with reasonable effort either.

Generator
PAG−IR

C++ Front End

PAG Analyzer

AST Annotator

Loop Optimizer
AST TransformerAST Query

Term To AST

Prolog−WCET

Annotator
Source Code

C++ Back End

AST

C/C++ Program

C/C++ Program

Optimized
Annotated a./o.

AST to Term

Figure 1. Infrastructure: Composed of LLNL-
ROSE (blue), PAG (red), SATIrE (green)

We have crafted an infrastructure by combining exist-
ing tools and languages for providing a solid basis for a
compact specification of different program analyses for
industrial applications (see Fig. 1). The present state
is that we have achieved the first stage of supporting
one popular language family, C/C++, and that com-
pact program analysis specifications are possible by us-
ing the Program Analyzer Generator (PAG) [1] from

AbsInt. Program Transformations can be performed
as source-to-source transformation by using the LLNL-
ROSE infrastructure [2], developed at Lawrence Liver-
more National Laboratory. The integration of PAG
into LLNL-ROSE is automated by the Static Analysis
Integration Engine (SATIrE), developed at TU Vienna.
Furthermore we also provide a connection to Prolog
which allows the specification of program analyses and
transformations as logic programs, currently focusing
on worst case execution time (WCET) analysis and an-
notation.
The talk presents the challenges and solutions of inte-
grating the framework LLNL-ROSE, the analyzer gen-
erator PAG, and different program representations of
C/C++, for allowing compact analysis specification,
source-to-source optimization, generating external for-
mats, and automating source code annotation. We
also describe the interfaces that we can offer for in-
tegration with other frameworks. Eventually results
are presented for some C/C++ analyses that we have
performed with our infrastructure.

References

[1] F. Martin. PAG – an efficient program analyzer
generator. International Journal on Software Tools
for Technology Transfer, 2(1):46–67, 1998.

[2] M. Schordan and D. Quinlan. Specifying trans-
formation sequences as computation on program
fragments with an abstract attribute grammar. In
Proceedings of the Fifth IEEE International Work-
shop on Source Code Analysis and Manipulation
(SCAM’05), pages 97–106. IEEE Computer Soci-
ety Press, 2005.

1


