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CSP is a process algebra defined by Hoare. The first se-
mantics associated with CSP was a denotational semantics
in terms of traces, failures and divergences. Later an oper-
ational semantics was added [7]. CSP has been applied in
many applications, notably for security protocols [6].

The most widely used tools today are fdr [2] and ProBE
[3]. These tools use a syntax called machine readable CSP
(CSP-M) which is the combination of Core-CSP with a rudi-
mentary functional language.

In earlier work we presented CIA [4] a CSP parser and
interpreter that supported full Core-CSP and some of the
CSP-M extensions. CIA is written in Prolog which made it
easy to integrate into the ProB1 animator and model checker
[5], making it the first tool for model-checking combined
CSP and B specifications [1].

Our new work is motivated by an industrial application
which demands support for full CSP-M syntax, linked with
B specifications. Furthermore, an important requirement of
our industrial partner was compatibility with the FDR and
Probe tools, while at the same time fixing some shortcom-
ings (e.g., the fact that the main process as well as all of its
subprocesses in isolation have to be finite state) and obvious
bugs of those tools.

This is challenging as the semantics of CSP-M is more
or less implicitly defined by its implementations in FDR
and ProBe. Although, Scattergood [8] describes a formal
semantics of CSP-M, there still is a considerable gap between
this formal semantics and what is implemented in FDR and
ProBE.

Other motivations for our re-implementation of CSP-M
are for example the desire to:

• make it possible to link full CSP-M specifications with
B [1] for property validation

• make it possible to generate state-space graphs or gather
statistics for CSP-M models

1ProB is a completely different tool than ProBE.
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• explore the state-space of a CSP-Process lazily and be
able to animate infinite state CSP-M specifications.

Each of these proved to be difficult to achieve with the ex-
isting tools. In this talk we will describe:

• a new parser for CSP-M, implemented in Haskell using
combinator parsing,

• a type checker for CSP-M, implemented by compiling
CSP-M into (non-executable) Haskell and using the
Haskell type checker to detect typing errors in CSP-M
specifications,

• an animator and model checker for CSP-M, which is
a complete re-implementation of [4] in Prolog, with
an additional pre-compilation phase to efficiently and
correctly handle nested let-expressions and other CSP-
M constructs which introduce local variables,

• empirical results, showing that our tool is, for some
specifications at least, much faster and more robust
than the existing ProBE and FDR tools.
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