
Parsing and Validation of full CSP-M Specifications using
Haskell and Prolog (Abstract)∗

Marc Fontaine and Michael Leuschel
Heinrich-Heine Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{fontaine,leuschel}@cs.uni-
duesseldorf.de

CSP is a process algebra defined by Hoare. The first se-
mantics associated with CSP was a denotational semantics
in terms of traces, failures and divergences. Later an oper-
ational semantics was added [7]. CSP has been applied in
many applications, notably for security protocols [6].

The most widely used tools today are fdr [2] and ProBE
[3]. These tools use a syntax called machine readable CSP
(CSP-M) which is the combination of Core-CSP with a rudi-
mentary functional language.

In earlier work we presented CIA [4] a CSP parser and
interpreter that supported full Core-CSP and some of the
CSP-M extensions. CIA is written in Prolog which made it
easy to integrate into the ProB1 animator and model checker
[5], making it the first tool for model-checking combined
CSP and B specifications [1].

Our new work is motivated by an industrial application
which demands support for full CSP-M syntax, linked with
B specifications. Furthermore, an important requirement of
our industrial partner was compatibility with the FDR and
Probe tools, while at the same time fixing some shortcom-
ings (e.g., the fact that the main process as well as all of its
subprocesses in isolation have to be finite state) and obvious
bugs of those tools.

This is challenging as the semantics of CSP-M is more
or less implicitly defined by its implementations in FDR
and ProBe. Although, Scattergood [8] describes a formal
semantics of CSP-M, there still is a considerable gap between
this formal semantics and what is implemented in FDR and
ProBE.

Other motivations for our re-implementation of CSP-M
are for example the desire to:

• make it possible to link full CSP-M specifications with
B [1] for property validation

• make it possible to generate state-space graphs or gather
statistics for CSP-M models

1ProB is a completely different tool than ProBE.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submitted to Programmiersprachen und Rechenkonzepte, 2007, Bad Hon-
nef.
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

• explore the state-space of a CSP-Process lazily and be
able to animate infinite state CSP-M specifications.

Each of these proved to be difficult to achieve with the ex-
isting tools. In this talk we will describe:

• a new parser for CSP-M, implemented in Haskell using
combinator parsing,

• a type checker for CSP-M, implemented by compiling
CSP-M into (non-executable) Haskell and using the
Haskell type checker to detect typing errors in CSP-M
specifications,

• an animator and model checker for CSP-M, which is
a complete re-implementation of [4] in Prolog, with
an additional pre-compilation phase to efficiently and
correctly handle nested let-expressions and other CSP-
M constructs which introduce local variables,

• empirical results, showing that our tool is, for some
specifications at least, much faster and more robust
than the existing ProBE and FDR tools.

1. REFERENCES
[1] M. Butler and M. Leuschel. Combining CSP and B for

specification and property verification. In Proceedings
of Formal Methods 2005, LNCS 3582, pages 221–236,
Newcastle upon Tyne, 2005. Springer-Verlag.

[2] Formal Systems (Europe) Ltd. Failures-Divergence
Refinement — FDR2 User Manual.

[3] Formal Systems (Europe) Ltd. Process Behaviour
Explorer (ProBE User Manual). available at
http://www.fsel.com/probe manual.html.

[4] M. Leuschel. Design and implementation of the
high-level specification language CSP(LP) in Prolog. In
I. V. Ramakrishnan, editor, Proceedings of PADL’01,
LNCS 1990, pages 14–28. Springer-Verlag, March 2001.

[5] M. Leuschel and M. Butler. ProB: A model checker for
B. In K. Araki, S. Gnesi, and D. Mandrioli, editors,
FME 2003: Formal Methods, LNCS 2805, pages
855–874. Springer-Verlag, 2003.

[6] A. W. Roscoe. Modelling and verifying key-exchange
protocols using CSP and FDR. In IEEE Symposium on
Foundations of Secure Systems, 1995.

[7] A. W. Roscoe. The Theory and Practice of
Concurrency. Prentice-Hall, 1999.

[8] J. B. Scattergood. Tools for CSP and Timed-CSP. PhD
thesis, Oxford University, 1997.

